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EXECUTIVE SUMMARY

This is the second part of the Verification and Validation (V&V) Report for the Malaria
Modeling and Surveillance (MMS) Project. The first part, which concerns malaria in
Thailand, was released in July 2006. It was shown that NASA data, models, and output
of the MMS project can be used for assessing malaria endemicity and predicting future
malaria risk in Thailand. It was also concluded that such information is useful for the
decision support needs of the Air Force Special Operations Command (AFSOC) and for
its Global Situational Awareness Tool (GSAT). GSAT is a system for assessing
environmental and health issues for U.S. overseas forces. In this second part of the report,
V&V are performed for malaria in Indonesia.

The goal of the MMS project is to use NASA data, model outputs, and analytical and
modeling expertise to enhance the decision support capabilities at AFSOC for malaria
risk assessment and control. The technical objectives of the MMS project are: 1)
identification of potential larval habitats for major malaria vector species; 2) estimation
of current and prediction of future malaria risks; and 3) estimation of spatio-temporal
transmission characteristics for cost-effective malaria control.

With a population of 242 million, Indonesia is the fourth most populous and the largest
Muslim nation in the world. Situating next to the Strait of Malacca that connects the
Indian and the Pacific Oceans, it occupies a significant, strategic location. In recent years,
the country has suffered from a series of natural disasters, including the tsunamis in
December 2004 in which Indonesia suffered immeasurable loss. The terrorism from
extremists and separatists has also drawn world’s attention to Indonesia. Indonesia has
the third highest malaria endemicity in Southeast Asia after Myanmar and India.
Approximately 40% of its population lives in malarious regions.

The distribution of malaria in Indonesia is highly heterogeneous. On Java and Bali, the
two islands where about 70% of the population concentrates, malaria is hypoendemic.
But on the Outer Islands, which include the rest of the archipelago, malaria ranges from
hypo- to hyperendemic. Malaria endemicity had been in decline during the early nineties
in Indonesia. But the situation has greatly deteriorated after much of the malaria control
efforts were abandoned due to the Asian economy crisis in 1997. Because malaria
control efforts are now decentralized to the individual districts, availability of adequate
resources and consistency of malaria control practice are of great concerns. The Ministry
of Health appears to have limited regulatory authority over the local public health
organizations. Lack of reliable data is a serious impedance for more effective reduction
of malaria endemicity. The real malaria situation is thought to be much more serious
than what is reported.

Currently, approximately half of the cases are falciparum malaria. Mono- and multi-drug
resistant falciparum malaria is a concern. The chloroquine resistant vivax malaria in Irian
Jaya (Papua) may have a serious consequence on the global efforts of combating malaria
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malaria) has been discovered in Sumatra. Hence Indonesia is the only country in the
world where three Plasmodium species have shown drug resistance.

Because there is no centralized clearing house for malaria data in Indonesia, gathering
malaria epidemiological data is difficult. We have nevertheless obtained malaria data
from: 1) the World Health Organization (WHO) Southeast Asia Regional Office, 2) the
Association of South East Asian Nations (ASEAN) Disease Surveillance Network, 3)
WHO Roll Back Malaria Menoreh Hills Project, and 4) U.S. Naval Medical Research
Unit-2. There are, however, extensive data gaps and inconsistencies within and between
datasets. In addition, these data may only reflect the lower bounds of the real malaria
endemicty.

Malaria transmission depends on the diverse factors that influence the vectors, parasites,
human hosts, and the interactions among them. These factors may include, among others,
meteorological and environmental condition, the innate and adapted immunity of the
human hosts, public health system, housing standards, vector control, road construction,
irrigation projects, population movements, and war-like conditions. The most apparent
determinants are the meteorological and environmental factors, such as rainfall,
temperature, humidity, and vegetation. When other factors remain more or less constant,
the meteorological and environmental conditions can indeed be considered the driving
factors.

In an endemic area, the local adult population may acquire sufficient immunity after
repeated infections. The disease could be deadly, however, to young children, pregnant
women, those with depressed immunoresponse, and people new to the area. Because
malaria is virtually nonexistent in the U.S., Americans traveling abroad and U.S. overseas
forces are particularly vulnerable. Being the first to arrive in a conflict, and often in areas
with minimum public health service, AFSOC personnel faces the greatest threat from
malaria.

Although Thailand and Indonesia are both in Southeast Asia and not far apart
geographically, they do not have the same climate. The precipitation patterns in
Indonesia itself vary significantly from island to island. In addition, Indonesia and
Thailand do not share the same malaria vector species. In spite of these differences and
the more limited epidemiologic data available in Indonesia, we have shown that the
malaria endemicity in Indonesia can be modeled with the same methods as we used on
Thailand data.

This shows that malaria risk assessment and predictive techniques developed in the MMS
project are not restricted to a specific country. With appropriate remotely sensed
meteorological and environmental parameters, epidemiological data and socioeconomic
information, the techniques are applicable to other regions of the world.



1. INTRODUCTION

This is the second part of the Verification and Validation (V&V) Report for the Malaria
Modeling and Surveillance (MMS) Project. The first part, which concerns malaria in
Thailand, was released in 2006.

The technical objectives of the MMS project are: 1) identification of potential larval
habitats for major malaria vector species; 2) estimation of current and prediction of
future malaria risks; and 3) estimation of spatio-temporal transmission characteristics for
cost-effective malaria control. By using the techniques supporting these objectives
individually or jointly, a variety of malaria transmission problems can be resolved. The
MMS Project will bring the following benefits: 1) reduced morbidity and mortality for
local populations and U.S. overseas forces, 2) reduced damage to the environment, and 3)
reduced likelihood of larvicide, insecticide and anti-malaria drug resistance.

Thailand is one of the six countries in the Greater Mekong Subregion (GMS). GMS is
the world’s epicenter of multi-drug resistant falciparum malaria. In Thailand,
approximately 50% of the malaria cases are in this category. In the neighboring countries,
approximately 90% of the cases are in this categories. Thailand has a long border—
nearly 3,200 km over land—with Myanmar, Laos, Cambodia, and Malaysia as its
neighboring countries. Attracted by economic opportunities and escaping from military
conflicts, significant migrant and transient populations have come into Thailand. Due to
the limited accessibility of health care, these populations expand the human reservoir for
malaria transmission and escalate the endemicity among the native Thai population. The
movement of migrant and transient populations around the border is an important
contextual determinant that contributes to malaria transmission. In addition, it confounds
the complexity for the prediction of malaria transmission intensity based on
meteorological and environmental parameters.

In the first part of the V&V Report, we have shown that NASA data, models, and output
of the MMS project can be used for assessing malaria endemicity and predicting future
malaria risk in Thailand. We also concluded that such information is useful for the
decision support needs of our decision support partner, the Air Force Special Operations
Command (AFSOC), and its Global Situational Awareness Tool (GSAT). GSAT is a
system for assessing environmental and health issues for U.S. overseas forces.

In this second part of the V&V Report, V&V are performed for malaria in Indonesia. To
reduce repetition, only brief descriptions are given for those sections that are common to
the first part of the V&V Report. Some useful information, such as a summary of the
MMS-GSAT evaluation, is provided in the Appendices.



2. DESIGN AND IMPLEMENTATION

2.1 Malaria in Indonesia

With a population of 242 millions and an area nearly three times that of Texas, Indonesia
is the fourth most populous and the largest Muslim nation in the world. Situating next to
the Strait of Malacca' that connects the Indian and the Pacific Oceans, it occupies a
significant, strategic location. Indonesia consists of 30 provinces, 2 special regions
(Aceh and Yogyakarta), and 1 capitol district (Jakarta Raya). The entire country has 440
districts (regencies), with the average district approximately twice as large as the average
Texas county. An Indonesia map is included in Appendix B for reference.

Indonesia has yet recovered from the economic crisis that hit the Asian countries hard in
1997. 1t suffers from wide spread poverty, terrorism from extremists and separatists,
troubled financial sectors, and a weak democracy. The tsunami tragedy at the end of
2004 puts further strains on the national economy.

In general, there is a scarcity of malaria epidemiological data. We have, however,
managed to obtain the essential entomological and epidemiological datasets through the
good will of the officials at World Health Organization (WHQO) Southeast Asia Regional
Office (SEARO) and colleagues at the Navy Medical Research Unit 2 (NAMRU-2).

In the following, we will describe the general malaria situation in Indonesia, the
epidemiological data obtained from various sources, the ground based and satellite
measured precipitation data we have acquired, an analysis on modeling malaria
transmission with meteorological data.

Indonesia has the third highest malaria endemicity in Southeast Asia after Myanmar and
India (WHO SEARO website, 2006). The distribution of malaria in Indonesia, however,
is highly heterogeneous. On Java and Bali, malaria is hypoendemic. But on the Outer
Islands, which include the rest of the archipelago, malaria ranges from hypo- to
hyperendemic (Indonesian MOH, 2002).

The Malaria Subdirectorate in the Ministry of Health’s (MOH) Center for Disease
Control and Environment Health has the general responsibility for malaria control. Since
2001, as part of the overall decentralization efforts, the implementation of malaria
control has been relegated to the district level.

The malaria control efforts include passive case detection, clinical diagnosis and
treatment, and vector control. Only the districts on Java-Bali, where 70% of the total
population concentrates, are equipped to provide also active case detection and laboratory
diagnosis. Whether adequate resources and trained personnel are available and uniform
practice is followed for malaria control across the districts are the obvious concerns. The
Ministry of Health does not appear to have sufficient regulatory authority over the

T Strait of Malacca is approximately 600 miles long. Its narrowest point is less than 2 miles wide.



districts. Due to resource shortage and perhaps weakness in the reporting structure, there
is no centralized clearing house on malaria related data. Gathering reliable malaria
epidemiological data is therefore a serious problem.

The Indonesia archipelago spans approximately 5,000 km. Within this wide geographic
area, a number of anopheles species are the major malaria vectors, including An. aconitus,
An. balabacensis, An. farauti, An. koliensis, An. maculatus, An. minimus, An. punctulatus,
An. sundiacus, An. Umbrosus. The approximate distribution of these species are
illustrated in Figure 1 (WHO & UNICEF, 2005). The main habitats, bloodmeal
preference, and the biting and resting preferences are given in Table 1 (Lindsay et al.,
2004; WRBU web site, 2007). How the larval habitats of these species are affected by
and respond to climatic, environmental, and human-induced changes will be reflected in
seasonal and longer-term variations in malaria transmissions. Understanding the ecology
of these species also point to the way of using environmental management to reduce the
propagation of malaria vectors.

SUMATRA
An. sundaicus KALIMANTA_N SULAWESI
An. maculatus An. balabacensis A sundeice
An. aconitus An. umbrosus An. minimus
An. sundaicus An. aconitus
.
A \\
A 7 "
“ {\\\ )
&, \‘L\ ) Y
N \i(s) 3\\&\@ L (//(\
L W B iy .
S S
v~ > A 3
) N = & T
A\ \ -
N m a -EB
Qq} Q Bk & @ )
¥ > > £
o A
J\N/ !
s ol
N  JERr
2 w
. — t:—}/
R Y}
JAVA BALI
An. aconitus
An. sundaicus
An. balabacensis
IRAN JAYA
NUSA TENGGARA An. farauti
An. sundaicus An. koliensis
An. punctulatus
0 260 500 1,000 1,500
[ - 1Kilometers

Figure 1. Distribution of major malaria vector species in Indonesia.



Table 1. Major malaria vector species in Indonesia, their habitats, and blood meals, biting, and resting preferences (based on
Lindsay et al., 2004; WRBU website, 2007).

Species Islands Habitats Blood Meal Feeding Resting
A. aconitus Java-Bali, Sumatra, Prefer sunlit habitats: rice fields, swamps, irrigation Humans and Indeors and Indeors and
Sulawesi ditches, pools, streams with vegetation animals outdoors outdoors
A. balabacensis | Java-Bali, Kalimantan Forest species similar to A. diurs. Muddy and shaded Humans and outdoors outdoors
forest pools, animal hoofprints, vehicle tracks cattles
A. farauti Iran Jaya Same complex as 4. punctulatys. Sometimes breeds in Mostly humans Indoors and Indoors and
wells, containers; brackish waters outdoors outdoors
A. koliensis Iran Jaya Temporary pools in grassland areas in full sunlight Mostly humans Indoors and
outdoors
A. maculatus Sumatra Prefer sunlight. Tn or near hilly areas, seepage waters, Humans and Indoors and Mainly
pools formed in streams, edges of ponds, ditches, rice field | animals outdoors outdoors
A. minimus Sulawesi Prefer shaded areas of sunlit habitats. Flowing waters such | Mostly humans, | Mainly Mainly indoors
as foothill streams, springs, irrigation ditches, seepages, domestic animals | indoors
rice fields, burrow pits
A. punctulatus Iran Jaya Swamps, edges of flowing streams, springs, puddles, Humans
hoofprints, pools
A. sundiacus Java-Bali, Kalimantan, Costal species but also found in fresh water inland pocls. Humans and Indoors and Mainly indoors
Nusa Tenggara, Prefer sunlight. Salt or brackish waters, lagoons, marches, | domestic animals | outdoors
Sulawesi, Sumatra pools, seepages
A. umbrosus Kalimantan Swamp-forest areas with dark acid waters under heavy Humans Indoors and

shade

outdoors




2.2 Environmental Determinants for Malaria Transmission

The transmission of malaria is influenced by a myriad of factors. Environmental,
climatic, social, and economic, public health, political, and warlike conditions have all
been shown to contribute to malaria occurrence and outbreaks. Among these, the
environmental conditions, especially rainfall, appears to be the most recognizable
determinant. The intensity of malaria transmissions has long been associated with rainy
seasons in human experience. The excessive rain or drought brought about by the
climatic events like El Nifio Southern Oscillation (ENSO) have also been shown to
enhance the occurrence of malaria epidemics in the affected regions (Bouma & van der
Kaay, 1996; Poveda et al., 2001; Githeko & Ndegwa, 2001; Gagnon et al., 2002; Kovats
et al., 2003). Remote sensing is considered an important technology for predicting,
preventing, and containing malaria epidemics (MARA/ARMA, 1998; WHO, 2001; WHO,
2004a; WHO, 2004b) because the environmental variables can be remotely sensed from
satellites, and the likelihood of ENSO events may also be forecasted using satellite
measured parameters. In recent years, researchers have used various methods and
techniques that involves meteorological data or remotely sensed measurements for
forecasting malaria epidemics, in particular for Africa (Thomson et al., 1996; Hay et al.,
1998; Kleinschmidt et al., 2000; Rogers et al., 2002; Nalim et al., 2002; Small et al.,
2003; Abeku et al., 2004; Teklehaimanot et al., 2004a; Teklehaimanot et al., 2004b;
Omumbo et al., 2004; Thomson et al., 2006). Some of the forecasting techniques may
have already been used in operations (Grover-Kopec ef al., 2005). The advances in
Geographic Information System (GIS) have also helped the integration of remote sensing
measurements, epidemiological data, other information important to malaria transmission,
and modeling results (Albert et al., 2000).

Since rainfall provides vector breeding sites and prolongs vector life span by increasing
humidity, precipitation or precipitation anomalies is the attribute most frequently used for
predicting malaria epidemics. It has also been shown, however, that rainfall or the lack
of it has a complex effect on malaria transmission for various parts of the world (Kovats
et al.,2003). For example, although moderate rainfall may promote malaria transmission,
intense and prolonged rainfall may flush away larval habitats and thus reduce
transmissions. Similarly, lack of rainfall does not always reduce larval populations. On
the contrary, lack of rainfall may create new habitats, such as pools and puddles, in some
regions and therefore increase larval population. In addition, droughts may be deleterious
to predator populations or may cause human populations with no immunity to move to
areas endemic with malaria (Kovats et al., 2003). These factors may indirectly increase
overall malaria transmissions. For regions where regular, yearly malaria infections
contribute to partial immunity, a reduced transmission in certain years may increase the
vulnerability in later years.

Another meteorological variable that is often used for predicting malaria transmission is
temperature. Warmer temperature hastens larval and vector development and therefore
increases the rate of vector production (Craig et al., 1999). Higher temperature shortens



the sporogonic cycle to allow vectors a longer period to transmit malaria. Warmer air
also holds more moisture and therefore enhances mosquito survivorship.

Because malaria vectors have their preferred types of larval habitats (see for example,
Table 1), the presence of certain vegetation types may indicate the presence of some
malaria vector species. The notable example is rice fields, which are the larval habitats
of An. maculatus and An. sawadwongpor in Thailand, An. aconitus and An. minimus in
Indonesia, and An. sinensis in Korea. Another example is that the presence of Ae. niveus,
the filariasis vector in Thailand, is associated with bamboos and bamboo cups, which are
formed when the upper section of the bamboo is cut off. Identification of vegetation
types needs satellite data with at least medium spatial resolution, and the expensive, high
spatial resolution commercial data is sometimes needed.

2.3 Epidemiological Data

Considerable efforts were devoted to acquiring malaria data in Indonesia. The data we
currently have at hand include:

A. WHO Southeast Asian Regional Office’s database which includes both passive
case detection (PCD) and active case detection (ACD). This dataset includes
annual malaria cases from 1995 to 2003, and monthly cases from 1999 to 2003.

B. ASEAN Disease Surveillance Network’s database which includes annual PCD
malaria cases from 2001 to 2004.

C. Menoreh Hills Project dataset which is a joint effort between Indonesia Ministry
of Health and WHO Roll Back Malaria. This dataset consists of two years of
monthly data from 2000 to 2001. The latter part of the data may include both
PCD and ACD data.

A and B are relatively large datasets compiled from data collected by the Ministry of
Health and the Districts. Overall there are extensive data gaps in A and B, as well as
inconsistencies within and between datasets. Comparing the data among administrative
divisions and synthesizing a more complete picture on malaria transmission from these
datasets is a challenging task.

C is a small datasets. Because WHO'’s involvement in data collection, we believe its
quality is higher. Dataset C, however, only concerns an area smaller than 3 districts in

Central Java.

Of these three datasets, A and B are gridded data; and C is equivalent to point data
because it covers three adjacent small regions.
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2.3.1 Data from WHO SEARO

The database consists of monthly and annual data from ACD, MBS, and PCD. It
primarily consists of provincial malaria cases, but has district level data as well for some
provinces. This database does not differentiate malaria types — vivax, falciparum, mix or
others. Table 2 shows the current extend of this database for the monthly provincial
coverage.

Table 2. Completeness of the monthly malaria data in the WHO SEARO malaria database.

Completeness of clinics-based PCD malaria data in the WHO SEARO database

1999 2000 2001 2002 2003

1D |

Admin. Name JIFIMA[MI [ JfAlS[O[N[D[J[FM[Aa[MI[J[AlS[O[N[D[J[F M[A[M[I[I[A[S[O[N[D[J]F[M[AIM]I[I]A[S[OIN[D[J]F[M[A]M]I[J]A

1]

Aceh

2 |Bali

Bangka Belitung

Banten

Bengkulu

Gorontalo

Irian Jaya Barat

Jakarta

Jambi

Jawa Barat

Jawa Tengah

Jawa Timur

Kalimantan Barat
Kalimantan Selatan

Kalimantan Tengah

KalimantanTimur
Lampung

Maluku

Maluku Utara

Nusa Tenggara Barat

Nusa Tenggara Timur|

Papua (lrian Jaya)

Riau

Riau Kepulauan

Sulawesi Barat

Sulawesi Selatan
Sulawesi Tengah

Sulawesi Tenggara

Sulawesi Utara
Sumatera Barat

Sumatera Selatan

Sumatera Utara

Yogyakarta

Data are available
Data are combined with another province

Gorontalo data is combined with Sulawesi Utara data. Irian Jaya Barat with Papua {Irian Jaya). Maluku Utara with Maluku. Riau Kepulauan with Riau

Slide Positive Rate (SPR) for Java-Bali in 2002 based on the WHO SEARO database is
shown in Figure 2. For Java and Bali, blood samples were obtained from 0.7% of the
total Java-Bali population in 2002. 5.4% of the samples were positive. The Slide
Positive Rate (SPR) for Jakarta is not included in the figure because of insufficient
information on samples taken there.

On the Outer Islands, health centers and treatment posts are responsible for malaria
control. The annual malaria incidence per 1,000 population in provincial resolution is
shown in Figure 3. The real situation may be much more serious that what was reported.
WHO SEARO estimates that there are 15 million cases and 42,000 death annually in
Indonesia, with the majority of morbidity and mortality from the Outer Islands (WHO
SEARO website, 2006). The chloroquine resistant vivax malaria in Irian Jaya (Papua)
and the chloroquine resistant malariae malaria discovered in Sumatra (Maguire et al.,
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2002) are of great concerns. Because chloroquine and even Fansidar are freely available
in Indonesia without prescription, self administered, incomplete treatment is most likely
the cause for all three Plasmodium species to develop drug resistance.
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Figure 2. Slide Positive Rates for Java-Bali in 2002 based on the WHO

SEARO database.
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Figure 3. Annual Malaria Incidence per 1,000 population for the Outer
Islands based on the passive case detection data obtained from WHO
SEARO.

12



2.3.2 Data from ADSNet

We also obtained the ASEAN Disease Surveillance Network's (ADSNet web site, 2006)

malaria database. This dataset is based on PCD. It differentiates the types of malaria and
the types of facilities (hospitals, hospital's mobile units, or health centers) where the cases
were detected. The malaria cases in this database are classified into 5 age groups (<lyear,

1-4 years, 5-14 years, 15-44 years, and >45 years old). Some inconsistency between
monthly and yearly malaria cases, however, need to be resolved. The vivax data is less
complete than the falciparum data. Table 3 shows the completeness of the falciparum
part of this dataset. Falciparum malaria case rates based on PCD for 2002 are shown in
Figure 4. As explained earlier, the depicted case rates probably represent the lower
bound of the true falciparum endemicity.

Table 3. Completeness of the falciparum malaria data in the ASEAN Disease
Surveillance Network database

Completeness of falciparum malaria data in the ASEAN Disease Surveillance Network database

2001 2002 2003 2004

Monthly Yearly Monthly Yearl Monthly Yearl M onthly

Yearl

Province STH| H [CHC|STH| H |CHC[STH| H |CHC|STH| H |CHC|STH| H |CHC|STH| H [CHC|STH| H |CHC|STH

H

CHC

Nanggroe Aceh DS.

North of Sumatera

West of Sumatera

Riau

Jambi

South of Sumatera

=1 Rl =20 K30 B D3 S )

Bengkulu

Lampung

Jakarta

West of Java

Central of Java

‘Yogyakarta

East of Java

Waest of Kalimantan

Central Kalimantan

South of Kalimantan

East of Kalimantan

North of Sulawesi

Central of Sulawesi

South of Sulawesi

South East Sulawesi

Bali

West Nusa Tenggara

East Nusa Tenggara

Maluku

Irian Jaya

Bangka Belitung

Banten

Gorontalo

Nerth of Maluku

STH On-street treatment by hospitals data complete
H Hospitalized data incomplete
CHC Community Health Centers yearly data not consistent with monthly data
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Figure 4. Provincial falciparum malaria case rates (per 1,000 population)
in 2002 based on ASEAN Disease Surveillance Network data.

2.3.3 Data from MOH-WHO RBM

We have also obtained the data from the 7-month Menoreh Hills malaria project (2001-
2002) as well as a 24-month malaria time series (2000-2001) used by the project
(Indonesian MOH report; Indonesian MOH, 2002). Menoreh Hills is an area in Central
Java (Jawa Tengah) with persistent malaria transmission. Geographically, it spans parts
of three districts — Purworejo, Kulon Progo, and Magelang. This project was a MOH-
WHO RBM collaboration with funding provided by USAID. PCD, MBS, and Mass
Fever Survey (MFS) were used in the project. Because the latter part of the malaria time
series may include both PCD and MBS/MFS data, it is difficult to express the time series
in case rates. Based on the MBS and MFS results quoted in the report, the approximate
endemicity for vivax and falciparum together is 20% for Purworejo, 10% for Kulon
Progo, and 10% for Magelang. Because of WHO's involvement, these survey results
should be relatively reliable.

An. maculatus and An. balabacensis are the main malaria vectors in this region. Both
species prefer animal bloodmeals, and feeding and resting outdoors. Despite these
zoophilic and exophilic preferences, they are responsible for the malaria transmissions in
this region as well as in Thailand (4n. balabacensis is similar to the An. dirus in
Thailand.)
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In the Menoreh Hills region, normally there are two annual transmission peaks — one
during the dry season (June-August), and another during the rainy season (November-
January). There are hypotheses that different malaria vectors are responsible for the two
transmission peaks. The 24-month time series of malaria cases through MBS are shown
in Fig. 10. The two transmission peaks may merge if there are meteorological
abnormalities.

24 Meteorological and Environmental Data

Since the malaria data we have obtained consist of both point and area-wide
measurements, we have been acquiring both ground-based and satellite-measured
meteorological data.

Germany’s Global Precipitation Climatology Center (GPCC web site, 2007) is a World
Meteorology Organization (WMO) sponsored institution. It compiles and analyzes
precipitation data for climate research. GPCC’s dataset is based on measurements at
more than 40,000 ground stations provided by approximately 170 countries. The gridded
data is in 0.5°x0.5° resolution. Data with higher resolution will be available in the future.
The GPCC data for May 2002 is shown in Figure 5 as an example.

GPCC
PRECIPITATION
MAY 2002
(mm)

o
[Jo1-25
[125-50
50 -75
[ 75 - 100
100-125
= :gg :1?2 0— 250_ = 1,000 115\?(?Iometers
I 175 - 200
I 200 - 250
I > 250

No Data

Figure 5. Rainfall distribution in May 2002 based on GPCC data.
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As in the malaria study for Thailand, we use NASA’s Tropical Rainfall Measuring
Mission (TRMM) data to provide rainfall information in this study as well. TRMM
(Kummerow et al., 1998) is a joint mission between NASA and the National Space
Development Agency (NASDA) of Japan. It was launched in November 1997. The
mission is expected to end in 2009. Its successor will be the Global Precipitation
Measurement (GPM) mission, which is an international collaboration and involves a
constellation of satellites (Smith et al., 2006). The TRMM dataset provides a
precipitation estimate from multiple global data sources, including TRMM, infrared
measurements from geo-synchronous satellites, and rain gauges. These gridded estimates
are at 0.25°x0.25° resolution and monthly interval, with a coverage between 50°N and

50°S. Provincial rainfall in May 2002 derived from TRMM data is shown in Figure 6 as
an example.
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Figure 6. Provincial rainfall distribution in May 2002 based on TRMM data.

The rainfall patterns on the eight major islands vary significantly. To illustrate the
variation, the average monthly precipitation for the major cities on the eight islands from
2000 to 2005 are shown in Fig. 7. On Java and Bali, the two main islands, the wet season
lasts approximately from October to April. And the dry season is from May to
September. On other islands, however, the rainfall pattern can be very different. For
example, the wet and dry seasons are less pronounced on Kalimantan and Irian Jaya. The
dry and wet seasons on Maluku are opposite to those on Java and Bali. On Sumatra, at
Medan at least, there is a different rainfall pattern. In Nusa Tenggara, which include
Timor, there can be drought in the dry season. Because precipitation is the most
important environmental determinant in driving malaria transmission, different rainfall
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patterns will lead to different malaria transmission pattern. This is evident when
comparing the malaria transmission in Jawa Tengah (Fig. 8) on Java and Nanggore Aceh
Darussalam (Fig. 9) on Sumatra.
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Figure 7. Average monthly precipitation from 2000 to 2005 for the major cities
on the eight islands.

2.5 Modeling Malaria Risks

We use the neural network (NN) method to approximate the dependency of malaria cases
on the meteorological and environmental variables. This method has been successfully
used in many applications, including classification, regression, time series analysis, and
handwritten character recognition (Nelson & Illingworth, 1990). In this approach, the
probability density of the data is not assumed to follow any particular functional form.
Rather, the characteristics of the probability density are determined entirely by the
distribution in the data, hence, it is a data driven approach. This method is most suitable
for problems that are too complex to be expressed in a closed, analytical form. For
problems in which there are hidden, implicit variables, this approach is particularly
suitable, as it is difficult to either specify the variables properly or sufficiently account for
their effects mathematically.

To train our neural network model, we feed observed or measured parameters from the
past into the network. The input parameters may consist of meteorological,
environmental, and other variables and the output parameter is the corresponding malaria
cases for that specific location and time. Once trained, the network will be able to
estimate the cases at some other time period using the parameters corresponding to that
time period.
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The neural network used in this analysis is in the class of multi-layer perceptron
(Rumelhart & McClelland, 1986; Haykin, 1994; Bishop, 1996). The general network
architecture is composed of an input layer, one or more hidden layers, and an output
layer. Each layer consists of a number of nodes. In this analysis, meteorological and
environmental data are the main parameters fed into the input layer; and the malaria cases
or other data indicating malaria prevalence are the parameters generated from the output
layers. A hidden layer consists of one or more hidden nodes. The function of the hidden
layers in a neural network is to map the data structure into a new representation that
facilitates the optimization of the objective function. For example, if the objective
function is to maximize classification accuracy, hidden layers will transform the input
parameters into functions of the parameters to make the classes more readily separable.
Without hidden layers, a neural network may only differentiate linearly separable classes.
Because the complexity of the data structure and the objective function drive the
construction of hidden layers, trial and error is the usual approach to determine the
numbers of hidden layers and hidden nodes to be used. In fully interconnected networks,
weight decay (Bishop, 1996) can be used to eliminate nodes and links that are insensitive
to the optimization of the objective function.

In the hindcasting (or retrospective forecasting) mode, the model is used to estimate the
historical cases. The model’s estimation accuracy can then be determined by comparing
the model output with the events that took place in the past. Moreover, future malaria
cases can be predicted by using forecast parameters as input in the forecasting mode.
Once a model is trained with past epidemiological data for a region, estimates on current
malaria endemicity for that region can also be obtained by feeding current meteorological
and environmental data into the trained model.

We developed the majority of the processing, modeling, and analysis software in IDL,
Matlab and C, including a neural network code in C. Commercial software used in this
study includes ENVI/IDL, Matlab, NeuroSolution, and ArcView.

3. V&V METHODS AND RESULTS

Comparing with the malaria time series for Thailand provinces, the time series for
Indonesia are generally much shorter and incomplete (see Tables 2 and 3). Because
fewer data points are available for modeling, the number of variables (or covariates, or
degrees of freedom) must be reduced to preserve the ability for generalization.

Indonesia is situated from 5°N to 10°S across the Equator. Humidity is high year round
in this environment, and hence not an important factor in determining the variation of
malaria transmission. Although malaria vectors’ larval habitats are associated with
certain surface types or vegetation, high spatial resolution data is normally needed to
identify the surface and vegetation types. Vegetation indices derived from data with low
to medium spatial resolution can be used for inferring recent precipitation in arid or semi-
arid regions where precipitation data is not available. Such inference is less feasible for
regions where ample precipitation is normally received, and unnecessary if precipitation
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data can be obtained through other means. Consequently, both relative humidity and
vegetation index will not be included as independent variables in modeling to reduce the
degrees of freedom.

We use two provinces — Jawa Tengah and Nanggroe Aceh Darussalam (NAD) as
examples to illustrate training and prediction using neural network methods. Jawa
Tengah means Central Java, and NAD is the province that suffered tremendous, tragic
loss in the December 2004 tsunami. The independent variables for training include
current and last month’s precipitation, temperature, time and last month’s endemicity.
The time factor is included to accommodate for trend that is not related to meteorological
variables but more likely due to socioeconomic and anthropogenic factors. These factors
may include road building, deforestation, military conflict, economic crisis, and public
health support.
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Figure 8. Malaria cases time series (red) for Jawa Tengah Province. Modeled
cases are in blue, and hindcast cases are in green.

In Fig. 8, the malaria time series of the Jawa Tengah Province and input parameter
between February 1999 and January 2002 are used for training. The actual parameters
from February 2002 to December 2002 are then input in to the trained network to
hindcast the malaria cases. It is observed that the hindcast cases closely approximate the
observed malaria time series. The difference between the observed and hindcast time
series is due to factors that are unrelated to meteorological and climatic condition, such as
the socioeconomic and anthropogenic factors described previously.

Similary, Figure 9 shows the training and hindcast results for the NAD Province. The
hindcast result approximates the actual time series well.
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Figure 9. Malaria cases time series (red) for NAD Province. Modeled cases are
in blue, and hindcast cases are in green.

As described in Section 2.3, Menoreh Hills is a region in Central Java with persistent
malaria transmission, despite that the rest of Java has very low endemicity. Since the
Asian economic crisis in 1997, the malaria vector control efforts were interrupted and the
situation worsened.

It is difficult to implement larval control because of the topography of this region. There
are hundreds of small streams on the hill which are not easily accessible. These streams
swell with the rainfall. But after the water recedes, the drying stream beds create infinite
number of small pools which become the breeding sites of An. maculatus. Construction
of dams and timely flushing may reduce such breeding sites if resources are available.
But in general, any larval control method is difficult to implement because of the terrain
in this region.

Fig. 10 shows the active case detection (ACD) malaria time series as well as fitted and
hindcast results for Kulong Progo and Purworejo, two districts in the Menoreh Hills
region. The training results agree with the malaria time series well. Because the ACD
time series are only 2-year long, no data can be spared from training to test against
hindcast result. Because Menoreh Hills is part of the Jawa Tengah Province, we compare
the Jawa Tengah PCD time series with the sum of actual and hindcast time series of
Kulong Progo and Purworejo ACD data in Fig. 11. These time series were collected by
different teams with different methods for different objectives. Because people infected
with malaria may be asymptomatic or only have minor clinical symptoms, ACD cases
should be more than PCD cases. Although Menoreh Hills is part of Jawa Tengah, the
endemicity of Jawa Tengah is low. Therefore comparison of these two time series is still
qualitatively meaningful.
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Figure 10. Malaria cases time series (heavy) for Kulong Progo and Purworejo
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Figure 11. Comparison of Jawa Tengah PCD time series (heavy red) with the
sum of Kulong Progo and Purworejo ACD time series (heavy blue). The fitted
and hincast time series (thin blue) are also shown.

After July 2002, there appeared a significant drop in PCD cases in comparison with the
hindcast ACD cases, which was obtained according to reasoning of the variation of
environmental parameters. This may indicate that the continuous ACD in Menoreh Hills
results in lower endemicity at the end of this two-year project, beause in such studies all
positive residents are given treatment regardless of the presence or absence of symptoms.
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We have observed similar phenomenum at Bang Kong Mong Tha, the Thailand test site
(Zollner et al.). ACD is undoubtedly the most effective, but also the most costly, method
to reduce endemicity.

4. DATA LIMITATION IN V&V

We have shown, through training and hindcasting, that the neural network model can
reasonably well model the dependency on meteorological and environmental parameters
and predict future cases. The development and V&V of the model, however, are limited
by the availability of malaria data.

Because there is no centralized malaria database, completeness and reliability of the
datasets depends on the effort and the judgment of the compiling organization, as well as
the cooperation of the public health organizations that hold the data. In a decentralized
environment with weak regulatory policy and reporting structure, it is difficult to know
whether data were collected with consistency or not among the multiple levels of health
services (hospitals, clinics, health centers, mobile units, and volunteer treatment posts,
etc.) It is therefore difficult to decide whether to include or reject data with ambiguous
quality and history when compiling the datasets.

Our collaborators at NAMRU?2 do occasionally conduct active case detections or mass
blood surveys when requested by the public health agencies in the host countries. These
data, while undoubtedly have better quality than the average epidemiological data
available in these countries, the sample size is usually small due to the limited scope of
the surveys. The geographical distribution of the sampling points is also often limited.
In addition, active case detection or mass blood survey are usually conducted at locations
with ongoing or recent outbreaks. The slide positive rates at these locations are therefore
higher than the endemicity in the general populations. Consequently the data may not be
sufficiently representative for verifying the performance of the MMS risk assessment
model.

5. CONCLUSIONS

Previously we have used Thailand malaria data to show that our neural network based
techniques along with NASA data can estimate current and future malaria endemicity
with reasonably good accuracy. We have also concluded that such results and capability
are needed by our decision support partner to assess malaria risks for U.S. overseas forces.

A previous concern was whether this methodology and NASA data could equally well be
used for malaria in other parts of the world. This concern is legitimate because malaria
vector species, their larval habitats, parasite species, environmental determinants, and
socioeconomic factors that promote or prohibit transmission indeed have large variation
from region to region. Although the mathematical formulation for risk prediction may
remain the same in the broad sense, conceivably there may be variation needed to adjust
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for the specificity for the malaria transmission in a region. We therefore welcome the
opportunity to put our techniques to test using Indonesian data.

The challenge of assessing malaria risks in Indonesia is how to model the risk when
malaria time series are short and incomplete. And because of the decentralized public
health service and disease monitoring and control efforts, there is concern that whether
human malaria data were consistently collected.

In general, malaria transmission depends on the diverse factors that influence the vectors,
parasites, human hosts, and the interactions among them. These factors may include,
among others, meteorological and environmental condition, the innate and adapted
immunity of the human hosts, public health system, housing standards, vector control,
road construction, irrigation projects, and population movements. The couplings among
these factors may be so complex that it is difficult to isolate the key factors that promote
or sustain malaria transmission in an area.

The most apparent determinants are the meteorological and environmental factors, such
as rainfall, temperature, humidity, and vegetation. For example, human experience has
shown that malaria is correlated with the rainy season, and that ENSO events may either
increase or decrease malaria transmission. When other factors remain more or less
constant, the meteorological and environmental conditions can indeed be considered the
driving factors. These conditions can be remotely sensed using satellites that regularly
cover extensive geographical areas.

Because of the scarcity of malaria data in Indonesia, we have decided to use fewer
independent variables in order to reduce the degrees of freedom and improve
generalization. The two geophysical parameters excluded from modeling are relatively
humidity and vegetation index. Both parameters are deemed less significant in
comparison with other variables.

Using Indonesian malaria data, we have shown that neural network techniques are a
useful approach for modeling the dependency of malaria cases on meteorological and
environmental parameters. Neural network is a vital part of machine or artificial
intelligence, which is a discipline to study machine’s ability for learning and adaptation,
and exhibition of intelligent behaviors. In general, the neural network techniques are
superior to generalized linear models, because linearization are subjective and may not be
optimum.

The risk assessments from the MMS project will allow the U.S. overseas forces to be
better prepared for malaria prevention and in responding to malaria morbidity. In the
Armed Forces, there are other Decision Support Systems similar to GSAT that provide
risk assessments on infectious diseases. These systems exchange information with one
another. The beneficial returns of NASA data and results will be multiplied as the results
from the MMS project are shared with other Decision Support Systems.
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During peacetime or wartime, U.S. overseas forces work with the local public health
organizations to reduce disease risks among the general populations. The outcome of the
NASA MMS Project will therefore help reduce the morbidity and mortality among the
local populations. The risk assessments will also facilitate more targeted insecticide and
larvicide applications, and therefore reduce the potential damages to the environment and
the risk of insecticide resistance.

24



Appendix A. Summary of MMS-GSAT Evaluation from V&V
Report Part 1

The goals of AFSOC’s GSAT and NASA’s MMS Projects are clearly compatible. In the
Evaluation Report, we concluded that the NASA data, results, and the output from MMS
will be able to enhance GSAT’s capability.

The NASA data and results to be provided to GSAT include: 1) the satellite derived
meteorological and environmental parameters; 2) malaria risk maps for selected regions
of the world that are jointly agreed upon by AFSOC and NASA teams; and 3) potential
malaria vectors’ larval habitats for selected areas. The NASA team will further develop
its malaria modeling capabilities to assess malaria risks for regions of interest to AFSOC,
while the AFSOC team will integrate malaria risks and NASA Earth-Sun science data
into GSAT. The GSAT will also be tested by AFSOC 18th Flight Test Squadron and in
real military exercises.

When GSAT is fielded, the Air Force will gain a computerized environmental and
medical planning capability. The combined capabilities of the malaria assessments and
GSAT will provide the U.S. Air Force, Department of Defense, and its partners with a
decision support tool valuable to U.S. military and civilian sectors. Because U.S.
overseas forces generally assist the local public health organizations in disease prevention
and control, the enhanced GSAT will also benefit the local populations.
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Appendix B. Map of Indonesia
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ACRONYMS

AFRIMS
AFSOC
AVHRR
CCD
DAAC
DST
ENSO
EOS
GIS
GMS
GPM
GSAT
MMS
MODIS
MOPH
NAMRU-2
NCAR
NCEP
NDVI
SIESIP
TRMM
V&V
WHO

Armed Forces Research Institute for Medical Sciences
Air Force Special Operations Command
Advanced Very High Resolution Radiometer
Cold Cloud Duration

Distributed Active Archive Center

Decision Support Tool

El Nifio Southern Oscillation

Earth Observing System

Geographic Information System

Greater Mekong Subregion

Global Precipitation Measurement

Global Situational Awareness Tool

Malaria Modeling and Surveillance

Moderate Resolution Imaging Spectroradiometer
Ministry of Public Health (Thailand)

Naval Medical Research Unit-2

National Center for Atmospheric Research
National Centers for Environmental Prediction
Normalized Difference Vegetation Index
Seasonal-to-Interannual Earth Science Information Partner
Tropical Rainfall Measuring Mission
Verification and Validation

World Health Organization

27



REFERENCES

Abeku TA, De Vlas SJ, Borsboom GJIM, Tadege A, Gebreyesus Y, Gebreyohannes H,
Alamirew D, Seifu A, Nagelkerke NJD, Habbema JDF, 2004. Effects of meteorological
factors on epidemic malaria in Ethiopia: a statistical modelling approach based on
theoretical reasoning. Parasitology 128, 585-593.

ADSNet web site, 2007. http://www.asean-disease-surveillance.net

Albert DP, Gesler WM, Levergood B, 2000. Spatial Analysis, GIS, and Remote Sensing
Applications in the Health Sciences, Ann Arbor Press, 217pp.

Bishop CM, 1996. Neural Networks for Pattern Recognition, Oxford University Press,
482pp.

Bouma M, van der Kaay H, 1996. The El Nifio Southern Oscillation and the historic
malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system.
Tropical Medicine and International Health 1, 86-96.

Craig MH, Snow RW, le Sueur D, 1999. A climate-based distribution model of malaria
transmission in sub-Saharan Africa. Parasitology Today 15, 105-11.

Gagnon A, Smoyer-Tomic K, Bush A, 2002. The El Nifio southern oscillation and
malaria epidemics in South America. Int J Biometeorol 46, 81-89.

Githeko AK, Ndegwa W, 2001. Predicting malaria epidemics in the Kenyan highlands
using climate data: a tool for decision makers. Global Change & Human Health 2, 54-63.

GPCC web site, 2007. http://gpcc.dwd.de

Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, Ceccato P, Connor SJ, 2005.
An online operational rainfall-monitoring resource for epidemic malaria early warning
systems in Africa. Malaria Journal 4

Hay SI, Snow RW, Rogers DJ, 1998. From Predicting Mosquito Habitat to Malaria
Seasons Using Remotely Sensed Data: Practice, Problems and Perspectives. Parasitology
Today 14, 306-313.

Haykin S, 1994. Neural networks — a comprehensive foundation, IEEE Press, 696pp.
Indonesian Ministry of Health, Coordinated community action to control disease. 4pp.

Indonesian Ministry of Health, 2002. Report on a malaria control project in the Menoreh
Hills area, Central Java, Municipality of Yogyakarta, Indonesia. 8pp.

Kleinschmidt I, Bagayoko M, Clarke G, Craig M, Le Sueur D, 2000. A spatial statistical
approach to malaria mapping. International Journal of Epidemiology 29, 355-361.

28



Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A, 2003. EI Nifio and health. Lancet
362, 1481-89.

Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J, 1998. The Tropical Rainfall
Measuring Mission (TRMM) Sensor Package. Journal of Atmospheric and Oceanic
Technology 15, 809-817.

Lindsay S, Kirby M, Baris E, Bos R, 2004. Environmental management for malaria
control in the East Asia and Pacific (EAP) region. World Bank Health, Nutrition and
Population Discussion Paper, 66pp.

MARA/ARMA, 1998. Towards an Atlas of Malaria Risk in Africa -- First Technical
Report of the MARA/ARMA Collaboration. Mapping Malaria Risk in Africa/Atlas du
Risque de la Malaria en Afrique, 45pp.

Maguire JD, Sumawinata IW, Masbar S, Laksana B, Prodjodipuro P, Susanti I, Sismadi P,
Mahmud N, Bangs MJ, Baird JK, 2002. Chloroquine-resistant Plasmodium malariae in
south Sumatra, Indonesia. Lancet 359, 58-60.

Nalim S, Hartono, Sugeng, Bogh C, Bos R, 2002. Rapid assessment of correlations
between remotely sensed data and malaria prevalence in the Menoreh Hills area of
Central Java, Indonesia. Final report. WHO/SDE/WSH/02.06, WHO, 25pp.

Nelson MM, Illingworth WT, 1990. A practical guide to neural nets, Addison-Wesley,
344pp.

Omumbo JA, Hay SI, Guerra CA, Snow RW, 2004. The relationship between the
Plasmodium falciparum parasite ratio in childhood and climate estimates of malaria
transmission in Kenya. Malaria Journal 3

Poveda G, Rojas W, Quifiones ML, Vélez ID, Mantilla RI, Ruiz D, Zuluaga JS, Rua GL,
2001. Coupling between Annual and ENSO Timescales in the Malaria—Climate
Association in Colombia. Environ Health Perspect 109, 489-493.

Rogers DJ, Randolph SE, Snow RW, Hay SI, 2002. Satellite imagery in the study and
forecast of malaria. Nature 415, 710-5.

Rumelhart DE, McClelland JL, eds., 1986. Parallel distributed processing: exploring in
the Microstructure of cognition, Vol 1. Foundations, MIT Press, 517pp.

Small J, Goetz SJ, Hay SI, 2003. Climatic suitability for malaria transmission in Africa,
1911-1995. Proc Natl Acad Sci USA 100, 15341-5.

Smith EA, Asrar G, Furuhama Y, Ginati A, Adler R, Casse V, Durning J, Entin J, Houser
P, Iguchi T, Kakar R, Kaye J, Kojima M, Kummerow C, Levizzani V, Luther M, Mehta
A, Morel P, Mugnai A, Nakamura K, Nakazawa T, Neeck S, Oki R, Raju G, Shepherd M,
Simpson J, Stocker E, Testud J, 2006. In Measuring Precipitation from Space:
EURAINSAT and the Future (eds. Levizzani V, Bauer P, Turk FJ), Kluwer Publishers (in

29



press).

Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J, 2004a. Weather-based
prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I.
Patterns of lagged weather effects reflect biological mechanisms. Malaria Journal 3

Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M, 2004b. Weather-based
prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II.
Weather-based prediction systems perform comparably to early detection systems in
identifying times for interventions. Malaria Journal 3

Thomson MC, Connor SJ, Milligan PJ, Flasse SP, 1996. The ecology of malaria -- as
seen from Earth-observation satellites. Ann Trop Med Parasitol 90, 243-264.

Thomson MC, Connor SJ, 2001. The development of Malaria Early Warning Systems for
Africa. Trends in Parasitology 17, 438-445.

Thomson MC, DoblasReyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse
AP, Palmer TN, 2006. Malaria early warnings based on seasonal climate forecasts from
multimodel ensembles. Nature 439, 576579.

Walter Reed Biosystematic Unit website, 2007. http://www.wrbu.org

WHO, 2001. Malaria Early Warning Systems. WHO/CDS/RBM/2001.32, World Health
Organization, 80pp.

WHO, 2004a. Malaria epidemics: forecasting, prevention, early detection and control.
From policy to practice. WHO/HTM/MAL/2004.1098, World Health Organization, 52pp.

WHO, 2004b. Using Climate to Predict Infectious Disease Outbreaks: A Review.
WHO/SDE/OEH/04.01, World Health Organization, 55pp.

WHO, UNICEF, 2005. World Malaria Report 2005. WHO/HTM/MAL/2005.1102,
World Health Organization, -999pp.

WHO SEARO, 2007. Malaria situation in SEAR countries.
http://w3.whosea.org/EN/Section10/Section21/Section340 4022.htm

Zollner GE, Nigro JD, Sattabongkot J, Sithiprasana R, Khuntirat B, Maneechai N,
Kankaew P, Masuoka PM, Robert LL, Roberts DW, Thimasarn K, Vaughan JA, Coleman
RE, 2007. Longitudinal evaluation of malaria epidemiology in an isolated village in
western Thailand I: Study site and human demographics. (manuscript in preparation).

30



